Technical training is offered in webinar and in-person formats. See Training Registration for dates and enrollment information.
Objective
The Advanced Technical Seminar provides attendees a unique opportunity to acquire practical and up-to-date engineering knowledge, from the world's leading specialists and researchers, on how to study and design efficient and economical grounding and lightning mitigation systems.
Whether you wish to protect a power system, plant or a nearby utility subjected to electromagnetic interference from power system faults, lightning or switching surges, this course will present pertinent principles for utility, industrial and various public installations, during steady state, fault and transient conditions, using realistic models of the environment.
Emphasis is placed on the demonstration of scientific concepts, using practical examples drawn from the extensive number of research projects and engineering studies conducted by SES researchers since 1978. Pertinent analytical derivations are included in an extensive Reference Manual made available to all course participants. One of the main goals of this course is to explain and eliminate many misconceptions, ambiguities and incorrect measurements, analysis and design techniques which still abound in the industry and are taught at some courses.
Outline and Schedule
The webinar format of the course typically takes place over a two-week period comprised of eight half-day sessions. The in-person format is completed in a one-week period.
The same material is covered in the webinar and in-person formats.
In Week 1, we cover the three modes of electromagnetic energization. Earth resistivity measurement and interpretation techniques will also be discussed, for uniform and multilayered earth (soils with two and more horizontal and vertical layers). The concept of soil model equivalence and soil layer resolution will be explained based on computer simulations. The analysis and design of simple and complex grounding systems made of arbitrarily oriented three dimensional conductors buried in multilayered soils will be discussed and illustrated with practical examples. The case of a grounding system partially buried in a finite volume (e.g., backfill) of heterogeneous soil will be explored. The scientific concept of earth impedance measurements using the Fall-of-Potential method will be clearly explained based on various realistic soil models. Transmission line, buried cable and buried pipeline parameters (self and mutual impedances) in layered earth will be analyzed and fault current distribution computation techniques will be described. Electrical safety concepts will be introduced, and issues related to body currents, body impedances and foot resistances will be discussed for power frequency and high frequency electric exposure.
During Week 2, the focus is on demonstrating how to use SES’s powerful input and output processors such as SESCAD, ROWCAD and SESShield-3D. Week 2 also includes conductive and inductive interference effects caused by energized conductors on overhead and buried bare or coated metallic structures and conductors, such as pipelines, fences and communication wires are introduced and investigated in detail. Mitigation methods and equipment are presented and their relative merits are discussed. Interaction between the sources of the interference and the victim lines or circuits will be examined in detail. Finally, electric and magnetic fields generated by energized overhead and buried conductors at low and high frequencies as well as during transient conditions, such as lightning strikes, will be described and typical analysis methods and computation results explained.
Participants will be issued a certificate of completion and awarded the equivalent of 3.0 CEU (Continuing Education Unit) or 30 PDH (Professional Development Hour). The CEU and PDH are recognized units for recording participation in non-credit educational programs.
Semana 1
Conceitos fundamentais, Análise da frequência industrial e Conceitos de segurança
Dia 1
Conceitos fundamentais
Resistividade do solo
Estrutura dos pacotes
de software da SES
Modos de alimentação elétrica
Modelos e características da estrutura do solo
Conceitos de impedância
Eletrodos de retorno e estruturas subterrâneas
Medições de resistividade do solo e estratificação
Panorama dos softwares da SES
Dia 2
Análise e concepção de sistemas de aterramento
(Parte 1 de 2)
Teoria da análise de sistemas de aterramento
Camadas de solo horizontais, verticais, hemisféricas e cilíndricas e volumes finitos de solo
Otimização de projeto para reduzir o GPR e as tensões de toque e de passo
Dia 3
Análise e concepção de sistemas de aterramento
(Parte 1 de 2)
Conceitos, medição e interpretação
da impedância do solo
Introdução aos sistemas de aterramento eletricamente grandes
Técnica de medição pela Queda de Potencial
Medição e interpretação da impedância do solo
"Que distância é suficiente?"
Análise e supressão de ruídos
Dia 4
Distribuição da corrente de falta em redes do sistema elétrico de potência e parâmetros de linha
Conceitos e critérios da segurança elétrica
Sistemas com terminais múltiplos; modelagem de cabos para-raios, neutros e contrapesos
Condições de estado permanente, harmônicas e desequilíbrios
Cálculo da corrente de falta
Cálculo das impedâncias própria e mútua e das capacitâncias dos condutores aéreos e subterrâneos; solos uniformes e multicamada
Modelagem de transformadores
Mecanismos do choque elétrico
Limiares da corrente pelo corpo, norma IEEE 80; norma IEC 60479; efeitos da frequência; fatores da corrente no coração
Conceitos de impedância corporal, resistência do pé e o equivalente de Thévenin
Semana 2
Workshop de HIFREQ
Ambiente gráfico de entrada (SESCAD)
Análise de EMI, alta frequência e fenômenos transitórios
Workshop de descargas atmosféricas e sistemas de proteção
Dia 1
Workshop de HIFREQ
Ambiente gráfico de entrada integrado da SES e outros softwares e ferramentas gráficas
Usando as ferramentas e os recursos básicos do SESCAD
Interferência eletromagnética,
técnicas ambientais e de mitigação
Modelagem de tubulações e estruturas metálicas subterrâneas
Projeto de estações de válvulas e de teste
Influência combinada do acoplamento indutivo e condutivo e da mitigação
Efeitos das características do revestimento
Técnicas de mitigação e problemas da proteção catódica
Avaliação de impacto ambiental
ROWCAD e GRSplits-3D
Dia 3
Efeitos da frequência e das características dos condutores no desempenho de um sistema de aterramento e
Comparação dos modelos de campo e de circuito
Campos elétricos e magnéticos e os fenômenos transitórios
Descrição da abordagem de campo
Dependência da frequência dos condutores
Desempenho em alta frequência
Comparação entre as abordagens de campo e de circuito equivalente
Sistemas de aterramento extensos
Efeito das características do condutor no desempenho dos sistemas de aterramento
Efeitos da corrente circulante dos geradores locais no estudo do aterramento de uma usina geradora grande Exemplos de uma modelagem realística que inclui cabos, GIS e infraestrutura subterrânea
Indução em circuitos de comunicação e de proteção
Redução da tensão de estresse
Cálculo dos campos elétricos e magnéticos
Chaveamento de capacitores em subestações
Estudos de transitórios causados por descargas atmosféricas
Workshop de descargas atmosféricas usando o SESTransient
Dia 4
Proteção contra descargas atmosféricas
Outros tópicos
Análise da proteção contra descargas atmosféricas
SESShield-3D
Workshop de SESShield-3D
Tópicos adicionais selecionados pelos participantes
Perguntas e respostas sobre o exame de nível 1
The in-person training is a five-day course completed within a one-week period, comprised of four 8-hour days from Monday to Thursday, and ending with a half-day on Friday.
The week is divided into 3 parts.
During Part I of the course, the three modes of electromagnetic energization will be explained. Earth resistivity measurement and interpretation techniques will also be discussed, for uniform and multilayered earth (soils with two and more horizontal and vertical layers). The concept of soil model equivalence and soil layer resolution will be explained based on computer simulations. The analysis and design of simple and complex grounding systems made of arbitrarily oriented three dimensional conductors buried in multilayered soils will be discussed and illustrated with practical examples. The case of a grounding system partially buried in a finite volume (e.g., backfill) of heterogeneous soil will be explored. The scientific concept of earth impedance measurements using the Fall-of-Potential method will be clearly explained based on various realistic soil models. Transmission line, buried cable and buried pipeline parameters (self and mutual impedances) in layered earth will be analyzed and fault current distribution computation techniques will be described. Electrical safety concepts will be introduced and issues involving body currents, body impedances and foot resistances will be discussed for power frequency and high frequency electric exposure.
Part II is entirely devoted to a workshop aimed at learning how to use SES’s powerful input and output processors such as SESCAD, RowCAD and SESShield-3D.
In Part III of the course, conductive and inductive interference effects caused by energized conductors on overhead and buried bare or coated metallic structures and conductors, such as pipelines, fences and communication wires are introduced and investigated in detail. Mitigation methods and equipment are presented and their relative merits are discussed. Interaction between the sources of the interference and the exposed lines or circuits will be examined in detail. Finally, electric and magnetic fields generated by energized overhead and buried conductors at low and high frequencies as well as during transient conditions, such as lightning strikes, will be described and typical analysis methods and computation results explained.
Participants will be issued a certificate of completion and awarded the equivalent of 3.5 CEU (Continuing Education Unit) or 35 PDH (Professional Development Hour). The CEU and PDH are recognized units for recording participation in non-credit educational programs.
PARTE I - Conceitos fundamentais e análise da frequência industrial
Segunda-feira
Credenciamento e introdução
8h30 - 9h
Sessão 1
das 9h ao meio-dia
Sessão 2
das 13h às 17h
Conceitos fundamentais, resistividade do solo e estrutura dos pacotes de software da SES
Análise e concepção de sistemas de aterramento
Modos de alimentação elétrica
Modelos e características da estrutura do solo
Conceitos de impedância
Medições de resistividade do solo e estratificação
"Que distância é suficiente?"
Análise e supressão de ruídos
Panorama dos softwares da SES
Workshop
Teoria da análise de sistemas de aterramento
Eletrodos de retorno e estruturas subterrâneas
Camadas de solo horizontais, verticais, hemisféricas e cilíndricas e volumes finitos de solo
Otimização de projeto para reduzir o GPR e as tensões de toque e de passo
Introdução aos sistemas de aterramento eletricamente grandes
Workshop
Terça-feira
Sessão 3
das 8h30 ao meio-dia
Sessão 4
das 13h às 17h
Conceitos, medição e interpretação da impedância do solo
Conceitos e critérios da segurança elétrica
Distribuição da corrente de falta em redes do sistema elétrico de potência e parâmetros de linha
Técnica de medição pela Queda de Potencial
Medição e interpretação da impedância do solo
Análise e supressão de ruídos
Mecanismos do choque elétrico
Limiares da corrente pelo corpo, norma IEEE 80; norma IEC 479; efeitos da frequência; fatores da corrente no coração
Conceitos de impedância corporal, resistência do pé e o equivalente de Thévenin
Workshop
Cálculo da corrente de falta – método simplificado
Sistemas com terminais múltiplos; modelagem de cabos para-raios, neutros e contrapesos
Condições de estado permanente, harmônicas e desequilíbrios
Cálculo da corrente de falta – método detalhado
Cálculo das impedâncias própria e mútua e das capacitâncias dos condutores aéreos e subterrâneos; solos uniformes e multicamada
Modelagem de transformadores
Workshop
PARTE II - Workshop de processadores gráficos da SES
Quarta-feira
Sessão 5
das 8h30 ao meio-dia
Sessão 6
das 13h às 17h
Ambiente integrado de entrada gráfica da SES SESCAD
Outras ferramentas e pacotes de software gráficos
Usando as ferramentas e os recursos básicos do SESCAD
Execução e exploração de resultados a partir do SESCAD
SESSystemViewer e GRServer
RowCAD, GRSplits-3D
SESShield-3D, SESImpedance
Outras ferramentas da SES
PARTIE III - Análise de EMI, alta frequência e transitórios
Quinta-feira
Sessão 7
das 8h30 ao meio-dia
Sessão 8
das 13h às 17h
Interferência eletromagnética, técnicas ambientais e de mitigação
Efeitos da frequência em malhas de aterramento e grandes sistemas de aterramento
Modelagem de tubulações e estruturas metálicas subterrâneas
Projeto de estações de válvulas e de teste
Influência combinada do acoplamento indutivo e condutivo e da mitigação
Efeitos das características do revestimento
Avaliação de impacto ambiental
Técnicas de mitigação e problemas da proteção catódica
Workshop
Descrição da abordagem de campo
Dependência da frequência dos condutores
Desempenho em alta frequência
Sistemas de aterramento extensos
Efeito das características do condutor no desempenho dos sistemas de aterramento
Efeitos da corrente circulante dos geradores locais no estudo do aterramento de uma usina geradora grande
Modelagem de cabos e de sistemas GIS e GIL
Indução em circuitos de comunicação e de proteção
Redução da tensão de estresse
Workshop
Sexta-feira
Sessão 9
das 8h30 ao meio-dia
Sessão 10
das 13h às 14h00
Campos elétricos e magnéticos e proteção contra transitórios e descargas atmosféricas - I
Campos elétricos e magnéticos e proteção contra transitórios e descargas atmosféricas - II
Análise da proteção contra descargas atmosféricas
Chaveamento de capacitores em subestações
Cálculo dos campos elétricos e magnéticos
Estudos de transitórios causados por descargas atmosféricas
Workshop
Tópicos adicionais selecionados pelos participantes
Envio dos documentos do teste CDEGS nível 1
Distribuição de certificados
Instructors
Dr. Farid P. Dawalibi, Director of R&D and Engineering, co-founded SES in 1978. An internationally recognized expert in grounding and electromagnetic interference, he has authored more than 450 technical papers and research & engineering reports, and has presented over 150 short courses and technical seminars.
In 2012, Dr. Dawalibi established the SES Software Certification program, and currently serves as the Managing Instructor for all SES training activities, contributing to and providing oversight for the ongoing development of the curriculum as well as the cadre of instructors who lead the course sessions and workshops.
In addition to his ongoing training activities and pioneering research work, Dr. Dawalibi was the project leader of the team that developed the GATL and ECCAPP software packages (EPRI EL2699 and EL5472) and the AUTOGRID software package (CEA 249 D 541). He has served as an expert witness at several challenging court hearings, and is a technical advisor and industry consultant to several leading power, pipeline and railway utilities. He has also made significant contributions to, and authored portions of, ANSI/IEEE Standard 80.
Dr. Dawalibi obtained a doctorate in Electrical Engineering from Montreal Polytechnic, an engineering institution affiliated with the University of Montreal.
Christian Voyer, PhD, is a Senior R&D Manager who, since joining SES in 2010, has been involved in multiple aspects of the company’s activities including: analytical research projects, third-party technical report reviews, client technical support, software development, and studies related to grounding, safety, and electromagnetic compatibility problems. With his extensive experience, theoretical proficiency, and unwavering commitment to quality instruction, Christian is a valued member of SES’s instructor team, which he joined in 2013, as well as the Manager of SES’s Level 1 Certification program.
Christian obtained a doctorate in Experimental Physics in 2011 from McGill University.
Luis Valcárcel, PhD, is a Senior R&D Manager who joined SES in 2009, and has since been continuously engaged in software development, analytical research reports, major client projects, and technical support. His considerable practical experience in all aspects of grounding and EMI studies includes field experience with soil resistivity and touch/step voltage measurements. A member of SES’s instructor team since 2013, he leads courses at all certification levels, and is also involved in internal training to ensure that the required high bar of performance is met by all SES technical personnel.
Luis obtained a doctorate in Experimental Physics in 2008 from McGill University.
Maxime Daigle, PhD, is a Senior R&D Manager who has been with SES since 2014. In addition to his training responsibilities, Maxime is regularly engaged in client support and research activities which have contributed to significant improvements to multiple SES applications. He has also been involved in several client projects involving grounding and electromagnetic interference studies. With a solid combination of theoretical knowledge and practical experience, he has been a key member of SES’s instructor team since 2015.
Maxime obtained a doctorate in Electrical Engineering in 2011 from Montreal Polytechnic.
Parisa Dehkhoda, PhD, is a senior R&D researcher who has been with SES since 2021, where she is involved with research, software development, and providing technical support to SES’s clients. Parisa joined SES’s instructor team in 2023, bringing with her an extensive teaching experience of more than 10 years at the university level. Her main research interests are in numerical methods in electromagnetics, especially electromagnetic compatibility. She is the author or coauthor of more than 50 scientific articles and conference papers.
Parisa obtained a doctorate in Electrical Engineering in 2009 from Amirkabir University of Technology in Tehran.
Stéphane Franiatte obtained a B. Ing. degree (2013) in electrical engineering and an M. Sc. A. degree (2017) in software engineering from the École de Technologie Supérieure, Montreal, Canada. His area of specialization was in mathematical optimization and algorithmics. From 2003 to 2008, he served as an officer on a nuclear submarine, where he was responsible for the electrical propulsion systems as well as the acoustic discretion of the vessel through vibrational frequency analyses.
He joined SES in 2014. His research interests lie in applied mathematics, specifically in digital signal processing, transient analysis, numerical electromagnetism, and computer science.
Mohammad Shafieipour holds M.Eng.Sc. and PhD degrees in Electrical and Computer Engineering from Multimedia University in Malaysia (2010) and the University of Manitoba (2016). After completing his doctorate, he worked for several years as a Simulation Development & Research Engineer at Manitoba Hydro International.
Dr. Shafieipour joined SES in 2020, and currently provides technical support for the CDEGS software package, while also contributing to the development of the software.
He joined SES’s team of instructors in 2022, bringing not only his vast knowledge in Computational Electromagnetics and Electromagnetic Transient Analysis (subjects of over 40 scientific papers authored by Dr. Shafieipour) but also ample experience in multiple power systems simulation tools.
Certification
Those who elect to complete the optional Level 1 Certification exam and who receive a passing score will, upon completing a Level 2 Certification course, be eligible to take the Level 2 Certification exam, which if passed successfully can lead to pursuit of the highest certification level, Level 3 (Expert) Certification.
Also, their names will be posted on the Certified Users List of the SES website (unless the participant or their organization requests otherwise).